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Nonlinear dynamics of an ordinary electromagnetic mode in a pair plasma

G. Z. Machabeli,* S. V. Vladimirov, and D. B. Melrose
Special Research Centre for Theoretical Astrophysics, School of Physics, The University of Sydney,

New South Wales 2006, Australia
~Received 28 September 1998!

Nonlinear generation of an ordinary electromagnetic mode (o mode!, which has high phase velocity (vph

@c), and at the same time, is almost longitudinal for long wavelengths, is discussed in an electron-positron
plasma. The solution of the problem of increasing energy~‘‘plasmon condensate’’! of the long-wavelengtho
mode based on modulations of the wave by the beat wave of two higher frequency transverse electromagnetic
waves~propagating along the external magnetic field! is proposed. The system of equations describing three-
dimensional nonlinear dynamics of this ‘‘superluminal’’o mode is derived and analytical solution for the
modulated wave is found. The generated waves can have components propagating obliquely to the magnetic
field. Important consequences of the effect to processes in pulsar’s magnetospheres, in particular, the pulsar
radio emission, are discussed.@S1063-651X~99!05404-5#

PACS number~s!: 52.25.2b, 52.35.Mw, 52.35.Hr, 52.35.Fp
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I. INTRODUCTION

Recently, relativistic electron-positrone1e2 plasma has
attracted much attention@1#. Collective processes in the pla
mas are especially important for the physics of many as
physical objects such as pulsars, active galactic nuclei,
Also, there is recent interest in laboratory electron-posit
plasmas@2–4#. The literature on nonlinear waves and wav
particle interactions in a relativistic pair plasma can
loosely divided into two classes. In the first class are stud
related to particular astrophysical objects such as those b
on the well-developed model of pulsar magnetosphe
which apply the results in attempts to explain the obser
properties of pulsar radio emission@5–9#. The second class
involves investigations of basic collective properties
e1e2 pair plasmas, linear@1,10–13# or nonlinear~modula-
tional instabilities, soliton formation, etc.! @9,14–17#.

The pulsar radio emission is believed to originate in
pulsar magnetosphere, which is populated by a relativi
e1e2 plasma. Since the pulsar magnetic field is extrem
strong,B0;1012 G, plasma particles lose their perpendicu
momentum very fast through synchrotron radiation, and th
distribution function is essentially one dimensional. Mor
over, because of the equal masses of electrons and posit
there is more pairing symmetry in an electron-positr
plasma than in an electron-ion plasma~e.g., there is a gyro-
motion in a magnetic field in opposite directions at the sa
frequency!, and the spectrum of collective modes in t
plasma contains fewer branches of propagating waves
particular, the low-frequency modes associated with moti
of ions ~e.g., ion-acoustic and ion-cyclotron waves! are ab-
sent. The different low-frequency dispersion properties of
electron-positron plasma complicates consideration of n
linear mechanisms of wave-wave and wave-particle inte

*Permanent address: Abastumani Astrophysical Observatory
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tions that, as is widely believed, are responsible for the p
sar radio emission.

In Refs.@14,15#, attempts were made to describe modu
tional processes in a pair plasma, leading eventually to
mation of Langmuir solitons. However, in order to obta
closer analogies with the well-known modulational effects
an electron-ion plasma@18#, these models included artificia
assumptions as either the presence of an additional hot~elec-
tron or positron! component or the absence of a magne
field in the presence of a rarefied ion component. Howeve
is unclear how the additional component with a differe
temperature and/or density can be created in a pulsar m
netosphere.

The possibility of modulation of a longitudinal wave b
the beat of~also longitudinal! Langmuir waves, propagating
along the magnetic field, was studied in works@6–8#. The
solitons, derived in@6–8#, moving along the magnetic field
lines, were supposed to act as additional sources of radia
However, this type of four-plasmon interaction is limited to
narrow frequency range where the modes have phase ve
ity close to the speed of light. Moreover, as was dem
strated in@9,17#, the soliton solutions obtained are unstab
with respect to transverse perturbations. Thus the problem
the mechanism for reradiation of the energy of fast~with
velocities exceeding the speed of light!, almost longitudinal
ordinary modes into waves with slower~sub!luminal veloci-
ties ~which can leave the magnetosphere plasma! remains
open.

The aim of this paper is to investigate the possibility o
nonlinear~modulational! instability of an ordinary (o)mode
having phase velocity in the broad range of velocities
ceeding the speed of light. We propose the mechanism o
nonresonant generation of theo mode by two high frequency
transverse wavest and t8, propagating along the externa
magnetic field in the opposite directions. The electric fie
vectorsE and E8 of these waves are perpendicular to t
magnetic field, and intensive interaction with parallel~longi-
tudinal! perturbations is possible because of nonlinear d
motions of plasma particles in the fieldsE, E8, andB0 . This
a,
4552 ©1999 The American Physical Society
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formulation is entirely different from that of Refs.@6–9,17#.
We consider here a strongly magnetized electron-posi

plasma moving with relativistic velocity along the magne
field lines. In our study, we use~unless the opposite is spec
fied! the reference frame connected with the moving plas
This assumption does not mean that the perpendicular
tions of plasma particles~appearing as a result of intera
tions! are nonrelativistic. Furthermore, we calculate the n
linear current using the assumptions of small amplitudes
the interacting waves as well as small ratios of plasma
netic pressure to the magnetic pressure and plasma ele
frequency to the frequencies of the two electromagn
pump waves~the beat wave appearing as a result of th
interaction modulates the considered longitudinalo mode!.
We also assume that the amplitudes of the electromagn
pump waves considerably exceed the amplitude of the
gitudinal mode that is justified by our assumption that mos
transverse waves are generated in pulsar magnetosp
through~anomalous! cyclotron resonance@19–21#. Using the
above small parameters, we obtain a system of nonlin
three-dimensional equations, which is solved analytically
glecting back reaction of the modulations on the pu
waves.

The paper is organized as follows: In Sec. II, we consi
linear theory of waves in a relativistic electron-positr
plasma; motion of a test particle in the field of the incide
and scattered waves is studied in Sec. III; dynamics and
stability of theo mode is investigated in Sec. IV.

II. WAVES IN A RELATIVISTIC ELECTRON-POSITRON
PLASMA

The linear collective properties of an electron-positr
plasma are now well established@1,10–13#. According to the
theory, for oblique propagation with respect to the exter
magnetic field~directed alongz axis!, there are three norma
modes, see Fig. 1. One is the purely transverse extraordi
x mode with dispersion in the laboratory frame@12#,

FIG. 1. Spectre of waves in an electron-positron plasma
oblique propagation.
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vx5kcS 12
1

8

vp
2

vB
2

1

g0
3D , ~1!

where vp5@4p(ne1ni)e
2/m#1/25@8pne2/m#1/2 is the

‘‘combined’’ plasma frequency~i.e., taking into account
contributions of plasma electrons and positrons!, vB
5eB/mc is the cyclotron frequency, andg0 is the Lorentz
factor of plasma particles moving along the field lines. B
low, we consider a strongly magnetized plasma,vp!ṽB
[vB /g0 . The second and third modes are of mix
longitudinal-transverse character. The lower-frequency m
is analogous to the Alfve´n wave, and the higher-frequenc
mode is the fast~superluminal!, vph.c, ordinary mode (o
mode!. Analytical expressions for dispersion of these mod
are available in some limits. We consider the casekc
!A2vp for waves propagating almost parallel to the ma
netic field uk'u!kz . For theo mode we have@12#

vo
2.

vp
2

g0
3

13kz
2c21uk'u2c2. ~2!

In this paper, we do not consider the Alfve´n mode, and so do
not specify its dispersion. However, we note that for para
propagation there is a coupling pointvp'v05k0c, see Fig.
2, where all the three modes are indistinguishable~in a cold
plasma!, and proper consideration of their nonlinear prop
ties must take this into account. The electric field of thex
mode is perpendicular to the plane of vectorsk and B; the
electric fields of theo mode and Alfve´n mode are in the
plane. The oblique subluminal Alfve´n mode is strongly sup-
pressed due to Landau damping if its phase speed, e
tively vA /(11vA

2/c2)1/2, is less than the speed of the bulk
the particles; in the opposite limit Alfve´n waves are weakly
damped.

Low-frequency modes analogous to the ion-acoustic w
in an eletron-ion plasma, are absent in an electron-posi
plasma. Thus when considering nonlinear effects in the w
propagation, the only possibility for amplitude modulatio

r FIG. 2. Spectre of waves in an electron-positron plasma
parallel propagation.
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of the o mode is due to nonresonant excitation of a b
wave. This was pointed out in Ref.@6#, see also@7,8#. In the
cited papers, the possibility of amplitude modulation of t
purely parallelo mode~which is often called the Langmui
mode! was considered forkc!vp ; the beat wave is gener
ated as a result of interaction of two Langmuir waves w
close frequenciesuvL2vL8 u!vp . However, in an electron
positron plasma, with equal densities of electrons and p
trons~as in@6–8#!, this second-order process cancels beca
of the equal masses and opposite charges of the plasma
ticles. This is because the second-order nonlinear curre
proportional to the charge cubed, and the electron and p
tron contributions are equal and opposite. Furthermore, w
considering interaction of waves under the conditionuvL

2vL8 u!vp , the beat wave cannot be generated in the su
luminal uvL2vL8 u@ukz2kz8uc range of phase velocities be
cause of the wave dispersion. And, finally, when consider
waves near the coupling pointvL'v05k0c, one needs to
invoke nonlinear interactions with thex mode and the Alfve´n
mode. This possibility was studied in Ref.@17#, where self-
similar unstable solutions satisfying the nonlinear Sch¨-
dinger equation were found. An analogous problem was c
sidered in Ref.@9# where it was demonstrated that sm
transverse parturbations lead to unstable solutions.

Consider the possibility of modulations of the fasto mode
by transverse waves. Note that by ‘‘transverse’’ we imp
not only thex mode, but also the high-frequency~compared
with vp)o-mode, where its dispersion is close to the vacu
case. The difference between these modes in this case is
in their polarization. In the interaction, we are interested
the longitudinal superluminal component of the perturbat
appearing as a result of the interaction of two transve
waves:

Uv t2v8t

kz2kz8
U.c. ~3!

Substituting Eq. ~1! into Eq. ~3!, and using uku.kz(1
2k'

2 /2kz
2), this inequality implies

12
1

2F k'
2

kz~kz2kz8!
2

k'8
2

kz8~kz2kz8!
G.1. ~4!

To satisfy Eq.~4! for kz.kz8 , we requireuk'8 u.uk'u as well
as

uk'8 u
kz

uk'8 u2uk'u

kz2kz8
.1. ~5!

We note that there is an important qualitative differen
between a pair plasma and the more familiar~and more stud-
ied! electron-ion plasma when wave-wave and wave-part
interactions are considered. In an electron-ion plasma,
density fluctuations associated with Debye shielding can p
duce electric dipole radiation when forced to oscillate. T
effect has no counterpart in a pair plasma because the
trons and positrons oscillate out of phase. As a conseque
the nonlinear shielding@1#, which tends to dominate wave
wave interactions in electron-ion plasmas is absent,
Thomson scattering, which is the same for electrons and
t
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itrons, becomes the dominant nonlinear effect. Thus the p
cess of reradiation of a wave by a particle in such a plas
can be considered on an isolated electron~positron!, similar
to Thomson scattering when an electromagnetic wavt
forces oscillations of the particle generating a wavet8.

In the presence of an external magnetic field the gen
tion of the wavet8 can have a different origin. In particula
when the incident wave is in anomalous Doppler-resona
v2kzvz1ṽB50 with a plasma particle, the particle, in th
process of radiation, increases its radius of gyration@19–21#.
The frequency of the emittedt8 wave is close tovB /g,
whereg is the Lorentz factor of the particle. In this case t
particle energy is the source for the radiation. Parallel rad
tion damping in the caseg2v'

2 @c2 ~here,v' is the perpen-
dicular component of the particle velocity!, implies a damp-
ing force given by@22#

f52
2

3
g2

e2vB
2

c2

v'
2

c2

v

c
. ~6!

Thus the forces that act on a particle are those due to
electric and magnetic fields of the incident and emitt
waves, as well as the external magnetic field and the ra
tion damping.

III. MOTION OF A TEST PARTICLE

There are well-established methods for calculating high
order currents in a plasma@1,18#. For a relativistic pair
plasma, these methods can be based on the general proc
elaborated in a series of papers@23#. Here, however, we
present a simpler more physical calculation based on the
drodynamic approximation.

The equation of motion for a test particle moving togeth
with the plasma~i.e., in our reference framep0z50) in the
external magnetic field and the fields of the incident a
scattered waves, taking into account the radiation damp
force, is

dp

dt
5eFE1E81

1

c
v3~B01B1B8!G1f, ~7!

wheref is given by Eq.~6!. There are two small paramete
in the problem. First, there is the smallness of the wave fie
as compared to the external magnetic field, (E,E8,B,B8)
!B0 . Second, there is the smallness of the wave ener
compared to the plasma particle thermal ener
(uEu2,uE8u2)!mc2ngT . Furthermore, we split the test pa
ticle momentum into three parts:

p5p0'1p11p2 , ~8!

wherep0' corresponds to the unperturbed motion of the p
ticle in the external magnetic fieldB0 ,p1!p0' is the linear
perturbation ofp0' due to the waves, andp2!p1 is the non-
linear perturbation of the particle motion.

Expansion of the Lorentz factorg5@11(p0'1p1)2/
m2c2#1/2 to first order gives

v

c
.

p0'

mcg0'

1
p1

mcg0'

2
~p0•p1!p0

mcg0'
3

, ~9!
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whereg05@11p0'
2 /m2c2#1/2. After substitution of this ex-

pression into Eq.~7!, which is expanded in the same way, w
find a system of coupled equations forp0', p1 , andp2 . In
the zeroth approximation, we have

dp0'

dt
5

e

mc
p0'3B0 . ~10!

If the test particle is an electron, the solution of Eq.~10! is

p0x5p0'cosṽBt, p0y52p0'sinṽBt, ~11!

whereṽB5vB /g0' . For a positron, the sign of they com-
ponent of the momentum is opposite.

In the first approximation, the equation of motion can
written in the form

dp1x

dt
5e~Ex1Ex8!1ṽB~p1ycosṽB1p1xsinṽB!cosṽB1 f x ,

~12!

dp1y

dt
5e~Ey1Ey8!2ṽB~p1xsinṽB1p1ycosṽB!sinṽB1 f y .

~13!

The solution of Eqs.~12! and ~13! is given by

p1x5
euE'usinvt

2~v1ṽB!
1

euE'8 usinv8t

2~v81ṽB!
1

uf'u

4ṽB

sinṽBt, ~14!

p1x52
euE'usinvt

2~v1ṽB!
1

euE'8 usinv8t

2~v81ṽB!
1

uf'u

4ṽB

sinṽBt.

~15!

Here, for the radiation damping force we use Eq.~6! together
with the unperturbed solution, similar to Eq.~11!: v0x

5uv0'ucosṽBt,v0y52uv0'usinṽBt. We also assume that

Ex5uE'~r ,t !ucosvt, Ey5uE'~r ,t !usinvt, ~16!

as well as

Ex85uE'8 ~r ,t !ucosv8t, Ey852uE'8 ~r ,t !usinv8t, ~17!

where the wave amplitudesE'
(8)(r ,t) are slow functions of

position and time. For positrons, we have similar solutio
with the changee→2e and, therefore, alsovB→2vB .

Taking into account that the parallel component ofp2
3B0 is zero, we have

dp2z

dt
5

e

mcg0'

@p13~B1B8!#z . ~18!

From Maxwell’s equations, we have

Bx5
Ey

cosQ
, By52

Ex

cosQ
, ~19!

where we use the wave dispersion equationv.ukuc and
introduce the angleQ between the external magnetic fie
s

and the wave vector: cosQ5kz/uku. Substituting Eqs.~14!,
~15!, and ~19! into Eq. ~18!, we obtain the nonlinear longi
tudinal perturbation equation,

dp2z

dt
5

e2E'
2

mcvp
sin~Dvt !F vp

ṽB1v

1

cosQ
2

vp

ṽB1v8

1

cosQ8
G

2
euf'u

mcṽB
F uE'u

sinDVt

cosQ
1uE'8 u

sinDV8t

cosQ8
G , ~20!

where we introduce Dv5(v t2v8t )/vp , DV5(ṽB

2v8)/vp , DV85(ṽB2v)/vp , and t5vpt. The electric
field E2z is the result of the nonlinear interaction of th
wavest andt8 with the plasma particles. We note that in th
reference frame where the parallel particle momentum
zero,pz50, the parallel component of the radiation dampi
force is also zero,f z}vz50. Thus we havep1z5p2'50 and
the second-order current densityj (2) has only a parallel com-
ponent.

Consider two limits:~1! v t@ṽB and ~2! v t!ṽB ~note
that in both limits we havevp!ṽB). In the first limit the test
particle does not have time to complete one Larmor cyc
and generation of the wavet8 is due to reradiation of the
wave t by the particle whose unperturbed motion is effe
tively rectilinear. For simplicity, we do not consider the po
sibility of generation on higher cyclotron harmonics. In th
case, the frequency of the radiated wavev8t is close to the
frequency of the incident wavev t. For cosQ.cosQ8'1 and
uE'u'uE'8 u, we obtain from Eq.~20!,

dp2

dt
5

v* 0ṽB

v2

uE'
t u2

g0'

sin~Dvt !. ~21!

In the second limitv t!ṽB , the wavet8 is emitted over
many Larmor cycles of the test particle. The frequencyv8t is
then close to the gyrofrequencyṽB , and we have
v t!v8t for ṽB2v8t!vp . We have in this case,

dp2

dt
5

v* 0

ṽB

uE'8
tuuf'u

2g0'

sin~Dv8t !. ~22!

This is a new type of the ponderomotive force that appe
because of synchrotron radiation damping. The forces~21!
and~22! are manifestation of the nonlinear coupling betwe
the longitudinal and transverse components.

For further convenience, we rewrite Eqs.~21! and~22! as

dp2

dt
5asin~Dvt !, ~23!

where forv t@ṽB andDv5(v t2v8t )/v* 0 ,

a5
v* 0ṽB

v2

uE'
t u2

g0'

, ~24!

and forv t!ṽB andDv5(ṽB2v8)/v* 0 ,
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dp2

dt
5

v* 0

ṽB

uE'8
tuuf'u

2g0'

. ~25!

From Eq.~23!, we have the solution

p2z~ t !5
a

Dv
~12cosDvt !. ~26!

IV. NONLINEAR DYNAMICS OF THE FAST ORDINARY
MODE

Forces~21! and ~22! demonstrate nonlinear coupling o
longitudinal componentsEl with transverse componentsEt.
To describe the nonlinear dynamics, we start from Maxw
equations, which imply

]2E

]t2
1c2¹3¹E1

4p

c

] j

]t
50, ~27!

wherej is the nonlinear current of second order in the el
tric field.

We consider a wave packet propagating at the small a
with respect to the external magnetic field. Separating
low-frequency and high-frequency transverse compone
we have

E5El1Et, ~28!

whereEz
t 50, and assumev t@v l . Furthermore, we write

Ei
l ,t5 1

2 Ei
l ,t~r ,t !exp~ iv l ,tt2 ik l ,t

•r !, ~29!

with i 5x,y,z. For the transverse waves,v t.ktc. For the
longitudinal o mode ~Langmuir wave!, we have from Eq.
~29! @see also Eq.~2!#,

v l
25~v* !2~113kz

2c21k'
2 c2!, ~30!

wherev
*
2 52vp

2g0
23 . We also introduce the potential pertu

bations of the background density; thus

v
*
2 5v

* 0
2 S 11

dn

n0
D . ~31!

For the consideredo mode,vp@klc. The choice of the
characteristic time scale strongly influences the conside
equations. Here, we consider the caseDv!v;]/]t, which
corresponds to the inequality~5!. Thus we assume that in th
longitudinal direction klc!Dv!vp . For the transverse
fields Et, we havev!ktc, as well askl@uk'8

tu2uk'
t u.ukz

t u
2ukz8

tu @cf. condition ~5!#, thuskl@]/](x,y,z). Because of
v t@v l , it is natural to obtain a system of coupled equatio
presented as a result of expansion in the parameterv l /v t

!1.
We introduce the dimensionless variables,

E→
eE

mcvp
, r→

v* 0r

c
, t→v* 0t. ~32!

Then, substituting Eqs.~28! and~29! into Eq.~27! and taking
into account Eq.~32!, we obtain
ll

-

le
e

ts,

d

s

]E~x,y!
t

]t
50, ~33!

and

2i
v l

v* 0

]E~x,y!
l

]t
2 i

k0
l c

v* 0

]Ez
l

]~x,y!
5

dn

n0
E~x,y!

l ,

2i
v l

v* 0

]Ez
l

]t
2 i

k0
l c

v* 0
S ]Ex

l

]x
1

]Ey
l

]y D 5
dn

n0
Ez

l . ~34!

Equations~33! are written in the zeroth approximation fo
the expansion of Eq.~27! in the parameterv l /v t. They re-
flect the fact that the modulation of Langmuir waves h
little effect on the amplitudes of the high-frequencyt waves:

E'
t .const. ~35!

However, the nonlinear terms on the right-hand sides of
~34! are determined by the amplitudes of the high-frequen
wavesE'

t .
If we neglect the right-hand side in the first equation

~34!, the resulting expression has a form similar to that fou
in @17#. However, the difference is in the nonlinear term:
@17#, dn/n0}uEz

l u2, whereas in our case the density perturb
tion is caused by the beating of the two high-frequency tra
verse waves. The expression fordn/n0 can be found by av-
eraging the continuity equation over the high frequency. W
find

]

]t

dn

n0
5

]

]z
p2z . ~36!

Here, we take into account that]dn/]x5]dn/]y50, and
p2z is defined by Eq.~26!.

Excluding the term withEz
l , we find from the first equa-

tion of ~34!,

]

]t
~“3El !z5

dn

n0
~“3El !z . ~37!

Thus we obtain

~“3El !z5CexpF E tS dn

n0
DdtG , ~38!

whereC is a constant. Since there is an instability of the c
field, below we assume that¹'•E'

l 50. Thus in the presence
of the density perturbation there is exponential growth of
transverse fields. We note that in the drift approximation,
density modulation as well as the change of the momen
P2 , caused by the high-frequency fieldsEt ~whenkiB0), are
parallel to the axisziB0 . However, the growth of the the
fields due to the parallel density modulations may be in a
direction:E(x,y,z)

l }exp(2ikzz2ik'•r').
To obtain an equation for the parallel componentEz

l , we
find the mixed derivatives]2E(x,y)

l /]t](x,y) from the first
equation of~34!. Thus, differentiating the second equation
~34! with respect to time~i.e., applying]/]t) and substitut-
ing the resulting expression for the mixed derivatives,
finally obtain
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]2Ez
l

]t2
2

1

4S k0
l c

v l D 2

D'Ez
l 1 i

]

]tS dn

n0
Ez

l D1
i

4

k0
l c

v l

dn

n0
“'•E'

l

50. ~39!

As already noted, we neglect the last term on the left-h
side of this equation. The assumption“'•E'

l 50 implies
that there are no components of the potential electric fi
perpendicular to the external magnetic field. We have

]2Ez
l

]t2
2K0

2D'Ez
l 1

i

2

]

]tS dn

n0
Ez

l D50, ~40!

whereK05k0
l c/2v* 0 . This equation has a form similar t

that found in@17#. However, our nonlinear term is propo
tional to (E'

t )2Ez
l , in contrast to (Ez

l )3 in @17#.
Using the continuity equation~36! and Eq. ~26!, we

Fourier transform~40!. We also assume that the frequency
the modulationsv far exceedsdv:v@dv, and expand the
electric fieldEz(v6dv) in the small parameterdv/v. Fi-
nally, the dispersion equation is given by

v22K0
2k'

2 1
kza

Dv
50. ~41!

From this equation, we can easily see that instability is p
sible when

kza

Dv
.K0

2k'
2 . ~42!

In the approximation considered, the aperiodic growth of
longitudinal potential field is not accompanied by a dens
modulation since the latter, as the continuity equation~36!
implies, is determined by the high-frequency transve
fields. We assume that the energy of the high-frequenct
modes is maintained by external sources, which is reason
for the plasma in a pulsar magnetosphere where excitatio
the transverse modes should be very effective@19–21#.

From Eq.~36!, we also find that

dn

n0
52 i

kza

DvE0

t

~12cosDvt !dt852 i
kza

DvS t2
1

Dv
sinDvt D .

~43!

Substitution of this equation into Eq.~38! and use of the
expansion

exp~ iasinDvt !5 (
n52`

1`

Jn~a!einDvt ~44!

gives us
-

ys
d

ld

f

s-

e
y

e

ble
of

~“3El !z5C (
n52`

1`

JnS kza

~Dv!2D expF2 i S kza

~Dv!2
2nD DvtG .

~45!

From the latter expression, we see that~averaging over suf-
ficiently long time intervalT@1/Dv) the transverse pertur
bation generated by the density modulation is not zero w

n5
kza

~Dv!2
. ~46!

In this case, (¹3El)z is determined by the Bessel functio
with equal index and argument, i.e.,Jn(n);n21/3 @24#.

V. CONCLUSION

We conclude that transverse electromagnetic waves g
erated in a pulsar magnetosphere can create beat de
modulations along the magnetic field. When the modulat
frequencyDv is much less than the frequencyv of the
generated field pertubations, the growth of a parallel pot
tial field Ez

l is accompanied by the growth of the transver
electromangetic fieldE' according to Eq.~38!. The results
obtained contribute to and develop the theory of nonlin
wave-wave and wave-particle interactions in a pair plasm
Also, the processes studied can be applied to real astroph
cal plasmas, in particular, those of pulsar magnetosph
~and the problem of transformation of energy of fast wav
with phase velocities exceeding the speed of light into
pulsar radio emission with phase velocities less or equa
the speed of light!. Indeed, in the development of the mod
lational instability, a nonresonant interaction with plasm
particles can lead~because of the action of the ponderom
tive force or the nonresonant quasilinear diffusion! to non-
linear generation of perpendicular components of part
momenta. If the perpendicular momenta are sufficient
generation of the high-frequency synchrotron radiation,
can expect appearance of an additional high-freque
source of the pulsar radio emission. However, we do
expect considerable change in the particle energies bec
in the processes of the nonresonant interactions the w
energy is distributed to all particles; at the same time,
change in the energy stored in the fast ‘‘superlumina
waves can be significant. Some of these mechanisms are
under investigation, and the results will be reported el
where.
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